Undistillable: Making A Nasty Teacher That CANNOT teach students

 $Haoyu\ Ma^1, Tianlong\ Chen^2,\ Ting-Kuei\ Hu^3, Chenyu\ You^4, Xiaohui\ Xie^1, Zhangyang\ Wang^2$

¹University of California, Irvine, ²University of Texas at Austin, ³Texas A&M University ⁴Yale University

Motivations

- **❖** Knowledge Distillation (KD) might open a loophole to unauthorized infringers to clone the Intellectual Property (IP) model's functionality.
- **❖** Data-Free KD [1][2] eliminates the necessity of accessing original training data, therefore can clone the functionality by simply imitating the input-output behavior.

Concept: Nasty Teacher

❖ A specially trained network that yields nearly the same performance as a normal one; but if used as a teacher model, it will significantly degrade the performance of student models that try to imitate it.

➤ Methodology: Self-Undermining KD

❖ Rationale: maintain correct class assignments, maximally disturbing incorrect class assignments so that no beneficial information could be distilled.

***** Implementation:

- 1) Train a normal teacher network (adversarial network)
- 2) Train the nasty teacher by maximizing the K-L divergence between the output of the nasty teacher and the adversarial network and simultaneously minimizing the cross entropy loss with the label.

$$\min_{\theta_T} \sum_{(x_i, y_i) \in \mathcal{X}} \mathcal{XE}(\sigma(p_{f_{\theta_T}}(x_i)), y_i) - \omega \tau_A^2 \mathcal{KL}(\sigma_{\tau_A}(p_{f_{\theta_T}}(x_i)), \sigma_{\tau_A}(p_{f_{\theta_A}}(x_i)))$$

Results

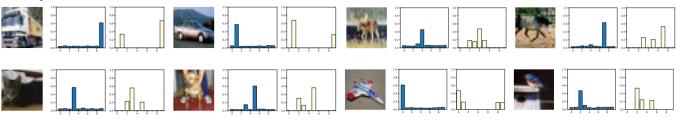
❖ Standard KD

Table 1: Experimental results on CIFAR-10.						
Teacher network	Teacher performance	Students performance after KD				
		CNN	ResNetC-20	ResNetC-32	ResNet-18	
Student baseline	-	86.64	92.28	93.04	95.13	
ResNet-18 (normal)	95.13	87.75 (+1.11)	92.49 (+0.21)	93.31 (+0.27)	95.39 (+0.26)	
ResNet-18 (nasty)	94.56 (-0.57)	82.46 (-4.18)	88.01 (-4.27)	89.69 (-3.35)	93.41 (-1.72)	

Table 2: Experimental results on CIFAR-100.					
Teacher network	Teacher performance	Students performance after KD			
		Shufflenetv2	MobilenetV2	ResNet-18	Teacher Self
Student baseline	-	71.17	69.12	77.44	-
ResNet-18 (normal)	77.44	74.24 (+3.07)	73.11 (+3.99)	79.03 (+1.59)	79.03 (+1.59)
ResNet-18 (nasty)	77.42(-0.02)	64.49 (-6.68)	3.45 (-65.67)	74.81 (-2.63)	74.81 (-2.63)
ResNet-50 (normal)	78.12	74.00 (+2.83)	72.81 (+3.69)	79.65 (+2.21)	80.02 (+1.96)
ResNet-50 (nasty)	77.14 (-0.98)	63.16 (-8.01)	3.36 (-65.76)	71.94 (-5.50)	75.03 (-3.09)
ResNeXt-29 (normal)	81.85	74.50 (+3.33)	72.43 (+3.31)	80.84 (+3.40)	83.53 (+1.68)
ResNeXt-29 (nasty)	80.26(-1.59)	58.99 (-12.18)	1.55 (-67.57)	68.52 (-8.92)	75.08 (-6.77)

❖ Data-Free KD

Table 6: Data-free KD from nasty teacher on CIFAR-10 and CIFAR-100					
dataset	CIFAR-10	CIFAR-100			
Teacher Network	Teacher Accuracy DAFL	Teacher Accuracy DAFL			
ResNet34 (normal)	95.42 92.49	76.97 71.06			
ResNet34 (nasty)	94.54 (-0.88) 86.15 (-6.34)	76.12 (-0.79) 65.67 (-5.39)			



(a) Normal Teacher

(b) Nasty Teacher

Analysis

* multi-peak logits may give a false sense of generalization and thus mislead the learning of students

References

- [1] Chen, Hanting, et al. "Data-free learning of student networks." ICCV 2019.
- [2] Yin, Hongxu, et al. "Dreaming to distill: Data-free knowledge transfer via deepinversion." CVPR 2020