#### **CVTHead: One-shot Controllable Head Avatar with Vertex-feature Transformer**

Haoyu Ma, Tong Zhang, Shanlin Sun, Xiangyi Yan, Kun Han, Xiaohui Xie

University of California, Irvine





#### WACV 2024

### **Background: 3D Morphable Face Models (3DMM)**

- Parametric model:
  - explicit control of shape, expression, head pose, texture, etc by coefficients
  - no information on detailed regions such as hair



[1] Volker Blanz, et al. "A Morphable Model For The Synthesis Of 3D Faces." TOG, 1999 [2] Li, Tianye, et al. "Learning a model of facial shape and expression from 4D scans." TOG, 2017

### **Background: 3DMM-based face generation**

single-view image





videos









Shape 1 Shape 2 Shape 3 Shape 4 Shape 5

> Shape 6 Shape 7

Shape 9 Shape 10

Expression Expression Expression Expression

> Sepression Sepression

Expressio

Jaw Nack

[1] Li, Tianye, et al. "Learning a model of facial shape and expression from 4D scans." TOG, 2017

| 1E  | 2020 |     | Female | ~     |  |
|-----|------|-----|--------|-------|--|
|     | =    |     | _      | -0.62 |  |
|     |      | -0  | _      | 0.58  |  |
|     |      | -0  | _      | 0.00  |  |
|     |      | 0   |        | 0.00  |  |
|     |      | 0   | _      | 0.00  |  |
|     |      | -0  | _      | 0.00  |  |
|     |      | -0  | _      | 0.00  |  |
|     |      | -0  | _      | 0.00  |  |
|     |      | -0  | _      | 0.00  |  |
|     |      | -0  |        | 0.00  |  |
| 11  |      | -0- |        | 0.15  |  |
| 12  |      | -0  |        | -0.07 |  |
| 13  |      | 0   |        | -0.02 |  |
| 1.4 |      | -0- | _      | 0.15  |  |
| 15  |      | -0  |        | 0.00  |  |
| 16  |      | 0   | _      | -0.13 |  |
| 17  |      | -0  | _      | 0.73  |  |
| 1.8 |      |     |        | 0.80  |  |
| 19  |      | -0  | _      | 0.00  |  |
| 110 |      |     | )      | 1.02  |  |
|     |      |     |        | 7.33  |  |
|     |      | -0  |        | 0.00  |  |
|     |      |     |        |       |  |



Explicit control with 3DMM coefficients

Neural Networks













generation of realistic face of novel expressions, head poses, face shapes, etc



#### **CVTHead: Framework**

(1) head mesh reconstruction; (2) vertex feature transformer; (3) neural point rendering



# Efficient and controllable head avatar generation from a single image with point-based neural rendering

#### **CVTHead: Head mesh reconstruction**



[1] Li, Tianye, et al. "Learning a model of facial shape and expression from 4D scans." *TOG, 2017*[2] Feng, Yao, et al. "Learning an animatable detailed 3D face model from in-the-wild images." TO*G, 2021*[3] Khakhulin, Taras, et al. "Realistic one-shot mesh-based head avatars." *ECCV*, 2022

- FLAME [1] Parametric head model:
  - $M(\beta, \phi, \theta)$
  - face shape  $\beta$ , expression  $\phi$ , head pose  $\theta$
- pre-trained DECA [2] and hair deformation model
  [3] (optional) to obtain mesh vertices:

 $\mathbf{V}^{\mathbf{s}} = M(\beta^{s}, \phi^{s}, \theta^{s}) + f_{H}(\mathbf{I}^{\mathbf{s}}) \in \mathbb{R}^{N \times 3}$ 

 $\mathbf{V^d} = M(\beta^s, \phi^d, \theta^d) + f_H(\mathbf{I^s}) \in \mathbb{R}^{N \times 3}$ 

## **CVTHead: Vertex feature transformer**

---- Obtain feature vector of each vertex in the canonical space from source image



3D point  $\mathbf{k}^{s} \in \mathbf{V}^{\mathbf{s}}$ 2D projection  $(u^s, v^s, d^s) = \Pi(\mathbf{k}^s, c_s)$ 

Limitations of pixel-aligned features [1]: • require accurate 3D mesh to locate 2D pixels • misleading feature for occluded 2D projections

Vertex feature as learnable token  $\mathbf{X}_{\mathbf{v}} \in \mathbb{R}^{N \times C'}$ 2D projection as positional encoding  $(u^s, v^s, d^s) \rightarrow \mathbf{E}_{uv}^s, \mathbf{E}_{dep}^s$ transformer inputs: vertex token & image token

• solve the limitation of pixel-aligned features long-range correspondence among all vertex features

[1] Saito, Shunsuke, et al. "Pifu: Pixel-aligned implicit function for high-resolution clothed human digitization." *ICCV*. 2019.

### **CVTHead: Neural vertex rendering**



Vertex feature



- vertex projection features  $\mathbf{P}_{\mathbf{F}}^{\mathbf{d}} \in \mathbb{R}^{H \times W \times C}$  $\mathbf{P}_{\mathbf{F}}^{\mathbf{d}}[[u^d], [v^d]] = \mathbf{v}_{\mathbf{F}}$
- generate synthetic image  $\mathbf{I}^{\mathbf{d}}$  and binary foreground mask  $\mathbf{M}^{\mathbf{d}}$  with a U-Net  $\mathscr{G}(\cdot)$  $(\hat{\mathbf{I}^d}, \hat{\mathbf{M}^d}) = \mathscr{G}([\mathbf{P}^d_{\mathbf{F}}, \mathbf{P}^d_{\mathbf{D}}])$
- get rid of tedious differentiable rendering

### **Benefits of CVTHead**

- One-shot

  - no fine-tuning or optimization for unseen subjects
- Efficiency
- Generalize well on diverse head poses
  - warpping-based methods only work well for a limited range of head pose

• a single reference image (v.s. multi-view or video inputs for NeRF-based methods)

• a single forward for rendering (v.s. hundreds of forwards per ray for volumetric rendering)

#### **Results:** Face Reenactment

Comparable performance to state-of-the-art graphics-based methods Better efficiency

| Dataset       |           | Vo            | oxCeleb1           |                    |         | Dataset       | taset VoxCeleb1          |                         |                |                       |
|---------------|-----------|---------------|--------------------|--------------------|---------|---------------|--------------------------|-------------------------|----------------|-----------------------|
| Method        | L1↓       | <b>PSNR</b> ↑ | LPIPS $\downarrow$ | MS-SSIM ↑          |         | Method        | $  FID \downarrow  $     | $\mathbf{CSIM}\uparrow$ | IQA $\uparrow$ | $\text{FPS} \uparrow$ |
| FOMM [49]     | 0.048     | 22.43         | 0.139              | 0.836              |         | FOMM [49]     | 39.69                    | 0.592                   | 37.00          | 64.3                  |
| Bi-Layer [70] | 0.050     | 21.48         | 0.108              | 0.839              |         | Bi-Layer [70] | 43.8                     | 0.697                   | 41.4           | 20.1                  |
| ROME [31]     | 0.048     | 21.13         | 0.116              | 0.838              |         | ROME [31]     | 29.23                    | 0.717                   | 39.11          | 12.9                  |
| Ours          | 0.041     | 22.09         | 0.111              | 0.840              |         | Ours          | 25.78                    | 0.675                   | 42.26          | 24.3                  |
|               |           |               |                    |                    |         |               |                          |                         |                |                       |
| Dataset       | VoxCeleb2 |               |                    |                    | Dataset | VoxCeleb2     |                          |                         |                |                       |
| Method        | L1↓       | <b>PSNR</b> ↑ | LPIPS $\downarrow$ | MS-SSIM $\uparrow$ |         | Method        | $ $ FID $\downarrow$ $ $ | $\mathbf{CSIM}\uparrow$ | IQA ↑          | $\text{FPS} \uparrow$ |
| FOMM [49]     | 0.059     | 20.93         | 0.165              | 0.793              |         | FOMM [49]     | 61.28                    | 0.624                   | 36.20          | 64.3                  |
| ROME [31]     | 0.050     | 20.75         | 0.117              | 0.834              |         | ROME [31]     | 53.52                    | 0.729                   | 37.34          | 12.9                  |
| Ours          | 0.042     | 21.37         | 0.119              | 0.841              |         | Ours          | 48.48                    | 0.712                   | 40.27          | 24.3                  |

Table 1. Results of self-reenactment on the VoxCeleb1 and Vox-Celeb2 ( $\uparrow$  means larger is better,  $\downarrow$  means smaller is better.)

Table 2. Results of cross-identity reenactment.

#### **Results: Face Reenactment**



































Ours

#### self-reenactment













#### cross-identity reenactment

#### **Results: 3DMM-based Face Animation**



Novel View

face animation with novel views, novel face shapes, and novel expressions

Novel Face Shape (Identity)

Novel Expression

#### **Ablation Study: Comparisons with pixel-aligned features**

#### Source Image

Driving Image Pixel-aligned







| Method                 | L1↓   | $\mathbf{PSNR}\uparrow$ | LPIPS $\downarrow$ | MS-SSIM $\uparrow$ |
|------------------------|-------|-------------------------|--------------------|--------------------|
| Pixel-aligned features | 0.045 | 21.81                   | 0.107              | 0.841              |
| CVTHead                | 0.041 | 22.09                   | 0.111              | 0.840              |

CVTHead



Paper ID: 216

#### Thanks!