

Nonparametric Structure Regularization Machine for 2D Hand Pose Estimation

Tencent腾讯

Yifei Chen*1, Haoyu Ma*2, Deying Kong2, Xiangyi Yan2, Jianbao Wu1, Wei Fan1, and Xiaohui Xie2

¹ Tencent Hippocrates Research Lab

² Department of Computer Science, University of California at Irvine

Introduction

- Objective: 2D hand pose estimation (keypoint detection)
- **Application**: AR/VR, gesture recognition, basic for 3D task.
- Challenge: self-occlusion due to articulation, viewpoint and object.
- Current Approach:
- Deep convolutional neural network: Convolutional Pose Machines (CPM) and Stacked Hourglass, only capturing pose structure information implicitly.
- Multi-task learning: unify hand pose estimation with hand mask segmentation, requiring a large amount of manually labelled mask for hand.

Our Contributions:

- We propose a novel cascade structure regularization methodology for 2D hand pose estimation, which utilizes synthetic hand masks to guide keypoints structure learning.
- We propose a novel probabilistic representation of hand limbs and an anatomically inspired composition strategy for hand mask synthesis.

Learning

- **Loss:** $Loss = Loss_{keypoint} + \lambda_1 Loss_{Structure}^{G1} + \lambda_2 Loss_{Structure}^{G6}$
- **Training Strategy:**
- End-to-End Training
- Decayed loss schedule: Structure learning is an auxiliary task, thus there is no need to get an accurate results, and our ultimate goal is keypoint. Let λ_1 and λ_2 decay by a ratio of 0.1 every 20 epochs during training.

Contact: haoyum3@uci.edu

Code: https://github.com/HowieMa/NSRMhand

Methodology

- Limb Mask Representation: Generate synthetic limb mask from labeled keypoints
- Hand model: 21 Keypoints + 20 Limbs L (Line Segment)
- Limb Deterministic Mask (LDM): Limb Probabilistic Mask (LPM): 0/1 mask around a limb Gaussian heatmap around a limb $S_{LDM}(p|L) = \begin{cases} 1 & if \ p \in L \\ 0 & otherwise \end{cases}$ $S_{LPM}(p|L) = \exp(-\frac{D(p, \overline{p_i p_j})}{2\sigma^2})$

G1: coalesce 20 limbs together (whole hand mask)

G6: coalesce 20 limbs into 6 groups (5 fingers + palm)

$$S * (p|g) = \max(S(p|L_1), S(p|L_2), ..., S(p|L_{|g|}))$$

In practice, we mainly focus on utilizing G1 and G1&6 (the combination of G1 and G6).

Network Architecture: based on CPM

Results

- **Quantitative Results:**
- Probability of Correct Keypoint (PCK) curve on Onehand10k and panoptic hand dataset

- PCK value on Panoptic dataset

σ_{PCK}	0.04	0.06	0.08	0.10	0.12	ave	improvement
CPM	55.25	73.23	81.45	85.97	88.80	76.94	-
LDM-G1 LDM-G1&6							+2.20 (+2.86%) +2.38 (+3.09%)
LPM-G1 LPM-G1&6							+2.84 (+3.69%) +3.09 (+4.01%)

Qualitative Results

